Search results for "Selenious Acid"

showing 3 items of 3 documents

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

2018

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

0301 basic medicineBioconversionStatic Electricity030106 microbiologychemistry.chemical_elementBioengineeringSelenious AcidSettore BIO/19 - Microbiologia GeneraleSelenium pollutionSelenium03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compoundNanoparticleBiosynthesisRhodococcusParticle SizeSelenite Rhodococcus aetherivorans Selenium nanoparticles Selenium nanorods Biogenic nanostructuresSelenium nanorodMolecular BiologyNanotubesbiologyBiogenic nanostructureRhodococcus aetherivoranSpectrometry X-Ray EmissionGeneral Medicinebiology.organism_classificationDynamic Light ScatteringSelenium nanoparticleBacteria AerobicNanotube030104 developmental biologychemistryBiochemistry13. Climate actionSelenious AcidSeleniteNanoparticlesMetalloidRhodococcusSeleniumRhodococcuBiotechnologyNew Biotechnology
researchProduct

Influence of bacterial physiology on processing of selenite, biogenesis of nanomaterials and their thermodynamic stability

2019

We explored how Ochrobactrum sp. MPV1 can convert up to 2.5 mM selenite within 120 h, surviving the challenge posed by high oxyanion concentrations. The data show that thiol-based biotic chemical reaction(s) occur upon bacterial exposure to low selenite concentrations, whereas enzymatic systems account for oxyanion removal when 2 mM oxyanion is exceeded. The selenite bioprocessing produces selenium nanomaterials, whose size and morphology depend on the bacterial physiology. Selenium nanoparticles were always produced by MPV1 cells, featuring an average diameter ranging between 90 and 140 nm, which we conclude constitutes the thermodynamic stability range for these nanostructures. Alternativ…

biogenic nanomaterials; selenium nanomaterials; selenite; selenium nanoparticles; selenium nanorods; Ochrobactrum; thermodynamic stability; electrosteric stabilizationPharmaceutical ScienceNanoparticlePhysiologyOxyanion02 engineering and technologySelenious AcidAnalytical ChemistryNanomaterialschemistry.chemical_compoundNanoparticleDrug Discoverychemistry.chemical_classification0303 health sciencesNanotubeselectrosteric stabilization021001 nanoscience & nanotechnologySelenium nanomaterialSelenium nanoparticleChemistry (miscellaneous)Molecular MedicineBiogenic nanomaterialNanorod0210 nano-technologybiogenic nanomaterialsselenium nanomaterialschemistry.chemical_elementOchrobactrumArticlelcsh:QD241-44103 medical and health scienceslcsh:Organic chemistryAmphiphileselenium nanoparticlesPhysical and Theoretical ChemistryParticle SizeSelenium nanorod030304 developmental biologyBiomoleculeOrganic ChemistryNanotube<i>Ochrobactrum</i>chemistry13. Climate actionNanoparticlesthermodynamic stabilityChemical stabilityseleniteselenium nanorodsSelenium
researchProduct

Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles

2017

Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles—both inside and outside the cells—characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have att…

0301 basic medicineBioconversionIron CompoundOchrobactrum sp. MPV1lcsh:QR1-502Metal NanoparticlesSelenious AcidSettore BIO/19 - Microbiologia GeneraleApplied Microbiology and BiotechnologyArsenicalslcsh:MicrobiologyCatalysiRare earth oxyanionschemistry.chemical_compoundAerobic selenite reductionArsenicalChalcogen metalloidsSettore CHIM/02 - Chimica FisicaMineralsAerobic tellurite reductionbiologyAxenic CultureAerobiosiAerobiosisBiochemistryItalyMetalloidTelluriumBiotechnologyBacterial-metalloid interactionSulfidechemistry.chemical_elementBioengineeringSulfidesOchrobactrumCatalysisChalcogen metalloidCatalysis03 medical and health sciencesChalcogenOchrobactrumMetal NanoparticleSeleniumBiosynthesisBacterial-metalloid interactionsMineralRare earth oxyanionResearchBiogenically synthesized nanoparticlesBiogenically synthesized nanoparticlebiology.organism_classificationCombinatorial chemistryMicroscopy Electron030104 developmental biologychemistryBacteriaSeleniumIron CompoundsMicrobial Cell Factories
researchProduct